BIACOM® - NOVEL COMPOSITE MATERIAL FOR IMPLANTS

CUTTING EDGE TECHNOLOGY

- New type of metal metal composite material for biomedical implants comprising biocompatible titanium (Ti) or biocompatible Ti alloy and a biodegradable component (in particular magnesium, Mg).
- The composite material is characterized by a low elastic modulus and density, while maintaining good mechanical strength and fatigue endurance comparable to commercial purity Ti.
- The composite material is manufactured using a cost effective approach, with a sequence of powder metallurgy techniques utilized at low processing temperature.

COMPETITIVE ADVANTAGE

- Ideal metal material for manufacturing of biomedical implants, which are expectedly subjected to intense mechanical and fatigue loading, with improved biocompatibility, surface bioactivity, osseointegration potential, and which reduce the stress-shielding phenomenon.
- Cost effective and productive fabrication of the raw composite material.
- Possibility to manufacture implants of complex shapes by machining from the raw composite material.

INDUSTRIAL APPLICABILITY

 The composite material can be industrially and repeatedly fabricated and used, particularly for fabrication of dental implants with excellent biocompatibility and mechanical compatibility with a living tissue, suited for application under intense cyclic mechanical loading.

THE INVENTORS ARE LOOKING FOR AN INDUSTRIAL PARTNER FOR SELLING / LICENSING THE INNOVATIVE TECHNOLOGY.

STAGE OF PROTECTION

- Croatian patent application (P20150781A)
- Slovak patent application (PP 50046-2016)
- European patent application (EP3322454)
- Israel patent application (IL 256877)
- Registered Slovak trademark: "BIACOM"

STAGE OF DEVELOPMENT

- Mechanical performance and in-vitro corrosion behavior of BIACOM[®] was complexly assessed.
- Response of bone tissue to BIACOM[®] was preliminary assessed by implantation assays using large animal models.

Implant from Ti + 12% Mg composite material implanted into a sheep's femur bone within in-vivo tests.

• Performance of cylindrical dental implant from BIACOM[®] of particular design is being complexly evaluated according to the standard for endosseous dental implants.

FOR MORE INFORMATION PLEASE CONTACT

Ing. Martin Gróf, PhD. phone: +421 911 038 240 email: grof.martin@savba.sk

The inventors use services of Technology Transfer Office of Slovak Academy of Sciences to market their invention.